Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
BMC Vet Res ; 20(1): 142, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594649

RESUMO

BACKGROUND: Infectious laryngotracheitis (ILT) is a highly infectious upper respiratory tract disease of chickens caused by infectious laryngotracheitis virus or Gallid herpesvirus 1 (GaHV-1). ILT is an important respiratory disease of chickens and annually causes significant economic losses in the chicken industry. Although numerous relevant studies have been published, the overall prevalence of ILT infection among chicken in mainland China is still unknown, and associated risk factors need to be evaluated to establish preventive measures. RESULTS: The present study reviewed the literature on the prevalence of ILT in chickens in China as of December 20, 2022, retrieved from six databases-CNKI, Wanfang, VIP, PubMed, Web of Science, and ScienceDirect-were used to retrieve relevant studies published between January 1, 1981 and December 20, 2022. The literature quality of studies was assessed, and 20 studies with a total of 108,587 samples were included in the meta-analysis. Results of the meta-analysis showed that the overall prevalence of ILT was 10% (95% confidence interval: 8 -12%) through the random-effects model, which showed high heterogeneity, I2 = 99.4%. Further subgroup analyses showed that the prevalence of ILT decreased over time; furthermore, the prevalence in Northwest China was slightly lower than that in North China and South China, and the prevalence estimated using the diagnostic technique AGP was higher than that reported using other diagnostic techniques. CONCLUSIONS: ILT is prevalent to some extent in mainland China. Given that the ILT attenuated live vaccine has a certain level of virulence and the prevalence differences between regions, we recommend controlling breeding density, improving immunization programs and continuously monitoring viruses and to prevent ILT prevailing in mainland China.


Assuntos
Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Doenças das Aves Domésticas , Vacinas Virais , Animais , Galinhas , Prevalência , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária
2.
iScience ; 27(4): 109545, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617557

RESUMO

Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.

3.
Mikrochim Acta ; 191(5): 242, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573524

RESUMO

Molecularly imprinted polymer (MIP) nanofilms for alpha-fetoprotein (AFP) and the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 using either a peptide (epitope-MIP) or the whole protein (protein-MIP) as the template were prepared by electropolymerization of scopoletin. Conducting atomic force microscopy revealed after template removal and electrochemical deposition of gold a larger surface density of imprinted cavities for the epitope-imprinted polymers than when using the whole protein as template. However, comparable affinities towards the respective target protein (AFP and RBD) were obtained for both types of MIPs as expressed by the KD values in the lower nanomolar range. On the other hand, while the cross reactivity of both protein-MIPs towards human serum albumin (HSA) amounts to around 50% in the saturation region, the nonspecific binding to the respective epitope-MIPs is as low as that for the non-imprinted polymer (NIP). This effect might be caused by the different sizes of the imprinted cavities. Thus, in addition to the lower costs the reduced nonspecific binding is an advantage of epitope-imprinted polymers for the recognition of proteins.


Assuntos
COVID-19 , alfa-Fetoproteínas , Humanos , SARS-CoV-2 , Epitopos , Polímeros Molecularmente Impressos , Polímeros
4.
Adv Healthc Mater ; : e2304523, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345186

RESUMO

Achieving hemostasis in penetrating and irregular wounds is challenging because the hemostasis factor cannot arrive at the bleeding site, and substantial bleeding will wash away the blood clot. Since the inherently gradual nature of blood clot formation takes time, a physical barrier is needed before blood clot formation. Herein, an ultra-light and shape memory hemostatic aerogel consisting of oxidized bacterial cellulose (OBC) and platelet extracellular vesicles (pVEs) is reported. The OBC-pVEs aerogel provides a physical barrier for the bleeding site by self-expansion, absorbing the liquid from blood to concentrate platelets and clotting factors and accelerating the clot formation by activating platelets and transforming fibrinogen into fibrin. In the rat liver and tail injury models, the blood loss decreases by 73% and 59%, and the bleeding times are reduced by 55% and 62%, respectively. OBC-pVEs aerogel has also been shown to accelerate wound healing. In conclusion, this work introduces an effective tool for treating deep, non-compressible, and irregular wounds and offers valuable strategies for trauma bleeding and wound treatment.

5.
Medicine (Baltimore) ; 103(8): e37163, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394503

RESUMO

INTRODUCTION: Mucoepidermoid carcinoma (MEC) of the breast is an extremely rare primary breast tumor. Between 1979 and June 2022, only 50 cases were reported. The pathological morphology and biological behavior of breast MEC remain poorly understood. PATIENT CONCERNS: A 47-year-old female was presented with a 10-day-old left breast mass detected by physical examination. DIAGNOSES: Ultrasonography could not distinguish whether the breast tumor was benign or malignant. After a biopsy of a breast tumor excision specimen, combined with immunohistochemical results, the patient was diagnosed with high-grade mucoepidermoid breast carcinoma. INTERVENTIONS: The patient underwent a modified radical mastectomy for her left breast. OUTCOMES: The patient was still free from local recurrence or metastases at 1-year follow-up. CONCLUSION: A high-grade MEC case without MAML2 rearrangement shows good recovery without complications. The diagnosis was confirmed by histomorphology and immunohistochemical markers. It is sometimes necessary to distinguish it from adenosquamous, adenoid cystic, or mucinous carcinoma. The primary treatment is surgical resection, and the prognosis is closely related to the pathological grade.


Assuntos
Neoplasias da Mama , Carcinoma Mucoepidermoide , Humanos , Feminino , Pessoa de Meia-Idade , Proteínas de Ligação a DNA/genética , Transativadores , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Carcinoma Mucoepidermoide/diagnóstico , Carcinoma Mucoepidermoide/genética , Carcinoma Mucoepidermoide/cirurgia , Mastectomia , Fatores de Transcrição
6.
Front Aging Neurosci ; 16: 1329357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389559

RESUMO

Vascular dementia (VD) is a prevalent cognitive disorder among the elderly. Its pathological mechanism encompasses neuronal damage, synaptic dysfunction, vascular abnormalities, neuroinflammation, and oxidative stress, among others. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered significant attention as an emerging therapeutic strategy. Current research indicates that MSC-derived extracellular vesicles (MSC-EVs) play a pivotal role in both the diagnosis and treatment of VD. Thus, this article delves into the recent advancements of MSC-EVs in VD, discussing the mechanisms by which EVs influence the pathophysiological processes of VD. These mechanisms form the theoretical foundation for their neuroprotective effect in VD treatment. Additionally, the article highlights the potential applications of EVs in VD diagnosis. In conclusion, MSC-EVs present a promising innovative treatment strategy for VD. With rigorous research and ongoing innovation, this concept can transition into practical clinical treatment, providing more effective options for VD patients.

7.
Environ Sci Pollut Res Int ; 31(11): 16583-16600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321279

RESUMO

The exploitation of coal resources has disturbed the equilibrium of the original groundwater system, resulting in a perturbation of the deep groundwater dynamic conditions and hydrochemical properties. Exploring the formation of mine water chemistry under the conditions of deep coal seam mining in the Ordos Basin provides a theoretical basis for the identification of sources of mine water intrusion and the development and utilization of water resources. This paper takes Longwanggou Coal Mine as the research area, collects a total of 106 groups of water samples from the main water-filled aquifers, comprehensively uses Piper trilinear diagram, Gibbs diagram, ion correlation, ion ratio coefficient and mineral saturation index analysis, and carries out inverse geochemical modeling with PHREEQC software, so as to analyze the hydrochemical characteristics and causes of the main water-filled aquifers in deep-buried coal seams in the research area. The results show that the main hydrochemical processes in the study area are leaching and cation exchange, and the groundwater is affected by carbonate (calcite, dolomite), silicate (gypsum) and evaporite. Calculations of mineral saturation indices and PHREEQC simulations have led to the conclusion that the dissolution of rock salt and gypsum in groundwater accounts for most of the ionic action. Na+, Cl- and SO42- are mainly derived from the dissolution of rock salt and gypsum minerals, while Ca2+ and Mg2+ are mostly derived from the dissolution of dolomite and calcite. The results of the inverse geochemical modeling are consistent with the theoretical analysis.


Assuntos
Água Subterrânea , Magnésio , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sulfato de Cálcio/análise , Poluentes Químicos da Água/análise , Água Subterrânea/química , Carbonato de Cálcio/análise , Água/análise , Carvão Mineral/análise
8.
Heliyon ; 10(2): e24560, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304808

RESUMO

Purpose: To evaluate the ability of computer-aided diagnosis (CAD) system (S-Detect) to identify malignancy in ultrasound (US) -detected BI-RADS 3 breast lesions. Materials and methods: 148 patients with 148 breast lesions categorized as BI-RADS 3 were included in the study between January 2021 and September 2022. The malignancy rate, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) were calculated. Results: In this study, 143 breast lesions were found to be benign, and 5 breast lesions were malignant (malignancy rate, 3.4 %, 95 % confidence interval (CI): 0.5-6.3). The malignancy rate rose significantly to 18.2 % (4/22, 95 % CI: 2.1-34.3) in the high-risk group with a "possibly malignant" CAD result (p = 0.017). With a "possibly benign" CAD result, the malignancy rate decreased to 0.8 % (1/126, 95 % CI: 0-2.2) in the low-risk group (p = 0.297). The AUC, sensitivity, specificity, accuracy, PPV, and NPV of the CAD system in BI-RADS 3 breast lesions were 0.837 (95 % CI: 77.7-89.6), 80.0 % (95 % CI: 73.6-86.4), 87.4 % (95 % CI: 82.0-92.7), 87.2 % (95 % CI: 81.8-92.6), 18.2 % (95 % CI: 2.1-34.3) and 99.2 % (95 % CI: 97.8-100.0), respectively. Conclusions: CAD system (S-Detect) enables radiologists to distinguish a high-risk group and a low-risk group among US-detected BI-RADS 3 breast lesions, so that patients in the low-risk group can receive follow-up without anxiety, while those in the high-risk group with a significantly increased malignancy rate should actively receive biopsy to avoid delayed diagnosis of breast cancer.

9.
Environ Res ; 246: 118143, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199465

RESUMO

Current understanding is limited regarding technologies that use biochar and microorganisms to simultaneously treat soils contaminated with both veterinary antibiotics (VAs) and heavy metals (HMs) from different animal farms. The contributions of the keystone taxa and their similarities from different animal farms under VA and HM stresses before and after soil remediation should be further investigated as well. An innovative treatment of Herbaspirillum huttiense (HHS1) inoculated waste fungus chaff-based (WFCB) biochar was designed for immobilization of copper (Cu) and zinc (Zn), and the removal of oxytetracycline (OTC), enrofloxacin (ENR), and a subsequent reduction in their resistance genes in soils from pig, cow, and chicken farms. Roles of indigenous microorganisms which can treat soils contaminated with VAs and HMs were summarized. Results showed that available Cu and Zn were reduced by 19.5% and 28.1%, respectively, while 49.8% of OTC and 85.1% of ENR were removed by WFCB-HHS1. The decrease in ENR improved overall microbial community diversity, and the increases in genera HHS1, Pedobacter, Flavobacterium and Aequorivita, along with the decreases of genera Bacillus, Methylobacter, and Fermentimonas were indirectly favorable to treat HMs and VAs in soils from different animal farms. Bacterial communities in different animal farm soils were predominantly influenced by stochastic processes. The regulations of functional genes associated with metabolism and environmental information processing, which contribute to HM and VA defense, were altered when using WFCB-HHS1. Furthermore, the spread of their antibiotic resistance genes was restricted.


Assuntos
Carvão Vegetal , Herbaspirillum , Metais Pesados , Oxitetraciclina , Poluentes do Solo , Animais , Suínos , Antibacterianos/farmacologia , Solo , Fazendas , Metais Pesados/análise , Poluentes do Solo/análise , Galinhas
10.
Virus Res ; 341: 199329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262568

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel enteric coronavirus that can cause vomiting, watery diarrhea in pigs and the death of piglets. The open reading frame (ORF) 5 is one of the accessory genes in PDCoV genome and encodes an accessory protein NS6. To date, the function of NS6 is still unclear. In this study, the recombinant NS6 was successfully expressed in prokaryotic expression system and purified. To prepare monoclonal antibody (mAb), six-week-old female BALB/c mice were primed subcutaneously with purified NS6. A novel mouse mAb against NS6 was obtained and designated as 3D5. The isotype of 3D5 is IgG2b with kappa (κ) light chain. 3D5 can specifically recognizes the natural NS6 in swine testis (ST) cells infected with PDCoV and expressed NS6 in human embryonic kidney 293T (HEK 293T) cells transfected with mammalian vector. The minimal linear B cell epitope recognised by 3D5 on NS6 was 25VPELIDPLVK34 determined by peptide scanning and named EP-3D5. The sequence of EP-3D5 is completely conserved among PDCoV strains. Moreover, six to nine residues of EP-3D5 were identified to be conserved in non-PDCoV strains. These results provide valuable insights into the antigenic structure and function of NS6 in virus pathogenesis, and aid for the development of PDCoV epitope-associated diagnostics and vaccine design.


Assuntos
Infecções por Coronavirus , Doenças dos Suínos , Masculino , Camundongos , Suínos , Animais , Feminino , Humanos , Deltacoronavirus , Diarreia , Epitopos de Linfócito B , Infecções por Coronavirus/veterinária , Mamíferos
11.
Chemosphere ; 351: 141139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185422

RESUMO

Pyrene was designated as a remediation target in this study, and low contamination of lead (Pb) was set to induce heavy metal stress. Pseudomonas veronii and its extracellular polymeric substances (EPSs) were chosen for biofortification, with the aim of elucidating the structural, metabolic, and functional responses of soil microbial communities. Community analysis of soil microorganisms using high-throughput sequencing showed that the co-addition of P. veronii and EPSs resulted in an increase in relative abundance of phyla associated with pyrene degradation, and formed a symbiotic system dominated by Firmicutes and Proteobacteria, which involved in pyrene metabolism. Co-occurrence network analysis revealed that the module containing P. veronii was the only one exhibiting a positive correlation between bacterial abundance and pyrene removal, indicating the potential of bioaugmentation in enriching functional taxa. Biofortification also enhanced the abundance of functional gene linked to EPS production (biofilm formation-Pseudomonas aeruginosa) and pyrene degradation. Furthermore, 17 potential functional bacteria were screened out using random forest algorithm. Lead contamination further promoted the growth of Proteobacteria, intensified cooperative associations among bacteria, and increased the abundance of bacteria with positive correlation with pyrene degradation. The results offer novel perspectives on alterations in microbial communities resulting from the synergistic impact of heavy metal stress and biofortification.


Assuntos
Metais Pesados , Microbiota , Pseudomonas , Poluentes do Solo , Matriz Extracelular de Substâncias Poliméricas/química , Chumbo/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Pirenos/metabolismo , Bactérias/metabolismo , Metais Pesados/metabolismo , Solo/química , Microbiologia do Solo
12.
World J Clin Cases ; 12(1): 24-31, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38292646

RESUMO

BACKGROUND: Cerebral infarction, previously referred to as cerebral infarction or ischemic stroke, refers to the localized brain tissue experiencing ischemic necrosis or softening due to disorders in brain blood supply, ischemia, and hypoxia. The precision rehabilitation nursing model for chronic disease management is a continuous, fixed, orderly, and efficient nursing model aimed at standardizing the clinical nursing process, reducing the wastage of medical resources, and improving the quality of medical services. AIM: To analyze the value of a precise rehabilitation nursing model for chronic disease management in patients with cerebral infarction. METHODS: Patients (n = 124) admitted to our hospital with cerebral infarction between November 2019 and November 2021 were enrolled as the study subjects. The random number table method was used to divide them into a conventional nursing intervention group (n = 61) and a model nursing intervention group (n = 63). Changes in the nursing index for the two groups were compared after conventional nursing intervention and precise rehabilitation intervention nursing for chronic disease management. RESULTS: Compared with the conventional intervention group, the model intervention group had a shorter time to clinical symptom relief (P < 0.05), lower Hamilton Anxiety Scale and Hamilton Depression Scale scores, a lower incidence of total complications (P < 0.05), a higher disease knowledge mastery rate, higher safety and quality, and a higher overall nursing satisfaction rate (P < 0.05). CONCLUSION: The precision rehabilitation nursing model for chronic disease management improves the clinical symptoms of patients with cerebral infarction, reducing the incidence of total complications and improving the clinical outcome of patients, and is worthy of application in clinical practice.

13.
Food Funct ; 15(3): 1390-1401, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38214563

RESUMO

Increasing attentions are paid to high internal phase emulsions (HIPEs) due to their unique properties. In this study, pea protein-based fibrils were used as emulsifier to stabilize HIPEs. We demonstrated that the molecular assembly pathway and interfacial behavior of pea protein-based fibrils are affected by ionic strength. And the increased abundance of highly flexible worm-like nanofibrils facilitated their adsorption and packing on oil droplets, resulting in improved emulsion properties to stabilize the HIPEs with the internal phase volume fraction as high as 90%. Based on this, high loading content of carotenoids up to 0.05 wt% in the prepared HIPEs, protection of their stability against heating, UV and iron ions, and significantly increased bio-accessibilities of the carotenoids were realized. Animal studies using a mouse model of DSS-induced colitis revealed that carotenoid loaded HIPEs can alleviate the colon injury, by downregulating the expression of inflammatory cytokines, and promoting intestinal barrier function. This work will deepen the understanding of the formation of pea protein fibrils and provide a reference for the rational use of carotenoid loaded HIPEs in IBD management.


Assuntos
Carotenoides , Proteínas de Ervilha , Humanos , Emulsões/metabolismo , Preparações de Ação Retardada , Inflamação/tratamento farmacológico , Tamanho da Partícula
14.
J Colloid Interface Sci ; 660: 565-573, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266338

RESUMO

The electrolytes with high lithium-ion transference number (tLi+) can reduce the formation of concentration polarization during charge/discharge process and improve the electrochemical performance of lithium-ion batteries (LIBs). Herein, we report triblock copolymer electrolytes (PBOEE) containing borate. The sp2 hybridized boron atoms acting as Lewis acids can anchor the anions of lithium salts, enabling PBOEE to achieve high tLi+ of up to 0.53. Also, the borate groups can promote the formation of stable organic-rich solid electrolyte interphase (SEI) film, which enables the Li symmetric cell to cycle stably at 0.1 mA cm-2/0.1 mAh cm-2 for more than 3100 h with a low overpotential of 0.08 V under 50 °C. The optimized PBOEE_24 has an ionic conductivity of 1.41 × 10-4 S cm-1 and electrochemical stability window of 4.8 V vs. Li+/Li at 50 °C. Combining these advantages, the LiFePO4/PBOEE_24/Li cell exhibits an initial discharge specific capacity of 157.3 mA h g-1 at 0.5C with a capacity retention of 85 % after 600 cycles under 50 °C. At a higher current density of 1C, the discharge capacity maintains at 128.0 mA h g-1 after 400 cycles with a capacity retention of 84.88 %. These results suggest that block copolymer containing sp2 hybridized boron atoms is a promising all-solid-state polymer electrolyte.

15.
Microbiol Spectr ; 12(1): e0301023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37991362

RESUMO

IMPORTANCE: Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Humanos , Herpesvirus Suídeo 1/metabolismo , Pseudorraiva/tratamento farmacológico , Pseudorraiva/patologia , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico
16.
Vet Microbiol ; 288: 109953, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118371

RESUMO

The discovery of antiviral molecules is crucial for controlling porcine deltacoronavirus (PDCoV). Previous studies have provided evidence that the IFN-inducible transmembrane protein 3 (IFITM3), which is coded by an interferon-stimulated gene, prevents the infections of a number of enveloped viruses. Nevertheless, the involvement of IFITM3 in PDCoV infection remains unexplored. In this study, it was observed that the overexpression of IFITM3 successfully restrictes the infection of PDCoV in cell cultures. Conversely, the suppression of IFITM3 facilitates the infection of PDCoV in IPI-2I and IPEC-J2 cells. Further studies revealed that IFITM3 limits the attachment phase of viral infection by interacting with the S1 subunit of the PDCoV Spike (S) protein. In addition, IFITM3 is verified as a member of the CD225 family, the GxxxG conserved motif of this family is important for it to limit PDCoV infection. In summary, this study reveals the mechanism of IFITM3 as an antiviral molecule to inhibit PDCoV infection, and also provides theoretical supports for screening effective anti-PDCoV drugs.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Suínos , Animais , Coronavirus/genética , Infecções por Coronavirus/veterinária , Glicoproteína da Espícula de Coronavírus/genética , Antivirais/metabolismo
17.
Chemosphere ; 350: 141056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158086

RESUMO

Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 µg/L, 10 µg/L and 100 µg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.


Assuntos
Androgênios , Receptores do LH , Feminino , Animais , Ratos , Androgênios/farmacologia , Hormônio Luteinizante , Hormônios Esteroides Gonadais , Testosterona
18.
Front Vet Sci ; 10: 1314903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146498

RESUMO

The infectious bursal disease virus (IBDV) is a member of the viruses that can induce immunosuppression in chickens. In recent years, more and more IBDV-infected cases by the novel variant IBDV were reported in China, and it has been demonstrated that currently used vaccines could not provide complete protection against these new IBDV variants. However, a lack of comprehensive analysis of the genomic characteristics of the novel variant strain IBDV has hampered its vaccine development. In this study, a strain of IBDV, designated HB202201, was phylogenetically analyzed, and it was found that the hypervariable region (HVR) of VP2 belonged to the novel variant strain. Furthermore, the 5'- and 3'-ends of segments A and B were analyzed using the rapid amplification of cDNA end (RACE) method. After the full-length of segment A and segment B were determined, the phylogenetic analysis of the segment A and segment B showed that the isolated HB202201 belonged to A2dB1 genotype, which demonstrated the HB202201 belonged to the novel variant strain. In addition, the specific mutations in VP1-VP5 amino acids were analyzed, which showed that there were multiple typical mutations in novel variant IBDV proteins, including VP1 (G24, I141, V163, and E240), VP2 (K221, and I252), VP3 (Q167 and L196), and VP5 (R7, P44, R92, G104, and E147), whereas there was no typical mutation in VP4. This study provides insights into the genomic and antigenic characteristics of the novel variant IBDV, which will promote the development of novel vaccine against the novel variant IBDV.

19.
Vet Microbiol ; 287: 109896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931575

RESUMO

The NF-κB pathway is a critical signaling involved in the regulation of the inflammatory and innate immune responses. Previous studies have shown that Pseudorabies Virus (PRV), a porcine alpha herpesvirus, could lead to the phosphorylation and nucleus translocation of p65 while inhibiting the expression of NF-κB-dependent inflammatory cytokines, which indicated that there may be unknown mechanisms downstream of p65 that downregulate the activation of NF-κB signaling. Here, we found that PRV DNA polymerase factor UL42 inhibited TNFα-, LPS-, IKKα-, IKKß-, and p65-mediated transactivation of NF-κB signaling, which demonstrated UL42 worked either at or downstream of p65. In addition, it was found that the DNA-binding activity of UL42 was required for inhibition of NF-κB signaling. Importantly, it was revealed that UL42 could induce the ubiquitination degradation of p65 by upregulating the suppressor of cytokine signaling 1 (SOCS1). Additionally, it was found that UL42 could promote the K6/K29-linked ubiquitination of p65. Finally, knockdown of SOCS1 attenuated the replication of PRV and led to a significant increase of the inflammatory cytokines. Taken together, our findings uncovered a novel mechanism that PRV-UL42 could upregulated SOCS1 to promote the ubiquitination degradation of p65 to prevent excessive inflammatory response during PRV infection.


Assuntos
Herpesvirus Suídeo 1 , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina , Citocinas/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo
20.
RSC Adv ; 13(48): 34057-34063, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020039

RESUMO

Exploring low cost and high efficiency catalysts for hydrogen production from electrochemical water splitting is preferable and remains a significant challenge. As an alternative to Pt-based catalysts, molybdenum nitrides have attracted more attention for their hydrogen evolution reaction (HER). However, their performance is restricted due to the strong bonding of Mo-H. Herein, molybdenum nitrides with Pt-doping are fabricated to enhance the catalytic activity for HER in acidic solution. As expected, Pt (5 wt%)-MoNx delivers a low overpotential of 47 mV at a current density of 10 mA cm-2 with a high exchange current density (j0 = 0.98 mA cm-2). The superior performance is attributed to the modified electronic structure of Mo with Pt incorporation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...